A novel synthesis of per(poly)fluoroalkyl aldehydes

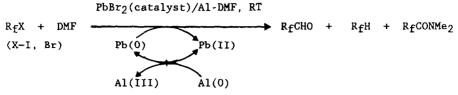
Chang-Ming Hu* and Xiao-Qing Tang

Shanghai Institute of Organic Chemistry, Academia Sinica, 345 Lingling Lu, Shanghai 200032 (China)

(Received February 1, 1992; accepted July 15, 1992)

Abstract

A novel synthesis of per(poly)fluoroalkyl aldehydes in high yield by the reaction of per(poly)fluoroalkyl iodides or bromides with dimethylformamide initiated by a PbBr₂(catalyst)/Al bimetal redox system is described.


Introduction

Per(poly)fluoroalkyl aldehydes and their monohydrates are useful intermediates in the synthesis of resins, polymers, dyes, medicinals and insecticides. Several preparative methods are now available [1-4]. For example, per(poly)fluoroalkyl aldehydes may be prepared by reduction of the corresponding acids, acyl chlorides or nitriles and by oxidation of the corresponding 1,1-dihydroper(poly)fluoro alcohols. However, these methods are rather tedious, the yields were generally low and a substantial amount of by-products were also obtained. Recently, Commeyras et al. prepared perfluoroalkyl aldehydes by reaction of perfluoroalkylzinc iodides with N, N-dimethyl formamide (DMF) in the presence of azobisisobutyronitrile (AIBN) [5]. In our continuing work on the application of redox systems in organofluorine chemistry, we have found that through the use of PbBr₂(catalyst)/Al, a redox system first introduced by Torii in the Barbier-type allylation of aldehydes [6], per(poly)fluoroalkyl aldehydes can be readily prepared not only from per(poly)fluoroalkyl iodides but also from per(poly)fluoroalkyl bromides under mild conditions and in high yield.

Results and discussion

Per(poly)fluoroalkyl halides, $R_f X$ (X = I, Br), reacted with excess DMF in the presence of aluminum powder (1.2–1.5 equiv.) and a catalytic amount of $PbBr_2$ (0.01–0.05 equiv.) by stirring at room temperature under nitrogen to give the corresponding per(poly)fluoroalkyl aldehydes in high yield. All

^{*}To whom all correspondence should be addressed.

Scheme 1

TABLE 1 Synthesis of per(poly)fluoroalkyl aldehydes from the corresponding halides with $PbBr_2(catalyst)/Al$ in DMF

Substrate (mmol)	PbBr ₂ /Al (mmol)	Reaction conditions		Product	Yield (%)
		Time (h)	Temp. (°C)		(70)
F(CF ₂) ₂ I(20)	0.6:28	4.0	5	F(CF ₂) ₂ CHO	81.2
$F(CF_2)_4I(10)$	0.2:10	1.5	RT	F(CF ₂) ₄ CHO	89.5
$F(CF_2)_6I(10)$	0.2:10	1.0	RT	F(CF ₂) ₆ CHO	91.2
$F(CF_2)_8I(5)$	0.1:5	1.5	RT	F(CF ₂) ₈ CHO	95.0
$F(CF_2)_{10}I(5)$	0.1:5	2.0	40	$F(CF_2)_{10}CHO$	91.5
$CI(CF_2)_4I(10)$	0.2:10	1.0	RT	Cl(CF ₂) ₄ CHO	91.0
Cl(CF ₂) ₆ I(10)	0.2:10	1.0	RT	Cl(CF ₂) ₆ CHO	95.0
$Cl(CF_2)_8I(5)$	0.1:5	1.0	40	Cl(CF ₂) ₈ CHO	92.1
$I(CF_2)_4I(10)$	0.3:20	2.0	RT	OHC(CF ₂) ₄ CHO	90.0
$I(CF_2)_6I(5)$	0.2:10	1.5	RT	OHC(CF ₂) ₆ CHO	92.0
$I(CF_2)_8I(5)$	0.2:10	1.5	40	OHC(CF ₂) ₈ CHO	91.5
I(CF ₂) ₄ O(CF ₂) ₂ SO ₂ F (10)[7]	0.2:10	2.0	RT	$OHC(CF_2)_4O(CF_2)_2$ SO_2F	85.0
$F_2C = CFOCF_2CF(CF_3)$ $O(CF_2)_2I(10)[8]$	0.2:10	1.5	RT	$F_2C = CFOCF_2CF(CF_3)$ $O(CF_2)_2CHO$	90.0
$F(CF_2)_2Br(20)$	0.5:20	10.0	5	$F(CF_2)_2CH(OH)_2$	89.5
$F(CF_2)_6Br(2.5)$	0.1:2.0	4.0	RT	F(CF ₂) ₆ CHO	91.5
$F(CF_2)_8Br(2.0)$	0.1:2.0	4.0	RT	F(CF ₂) ₈ CHO	90.2
$F(CF_2)_{10}Br(2.0)$	0.1:2.0	3.5	RT	$F(CF_2)_{10}CHO$	89.0

the aldehydes synthesized in this way were characterized by their MS, IR, 19 F and 1 H NMR spectra. The by-products were R_f H and R_f CONMe $_2$ in a total amount of less than 5.0% (Scheme 1).

It was observed that lead metal generated in situ plays a significant role in such reactions since aluminum powder or lead powder (>99.9% pure) alone were incapable of initiating the reaction.

Such a synthesis is applicable to a wide range of iodo- and bromoper(poly)fluoroalkanes. Functional groups such as trifluorovinyl ether and sulfonyl fluorides are not affected by the reaction. Perfluoroalkyl bromides usually react under the same conditions as the iodides, except that a longer reaction time is required.

TABLE 2 Effect of solvent on the synthesis of perfluorohexyl aldehyde from the corresponding iodide with $PbBr_2(catalyst)/Al$ in DMF

R _f I/DMF (mmol/mmol)	Solvent	Time	Products (%) ^a		
		(h)	R _f CHO	R_tH	
1:5	EtOH	8.0	15.0	85.0	
1:5	MeOH	8.0	10.0	90.0	
1:4	THF	8.0	85.9	14.1	
1:3	DMSO	6.0	88.0	12.0	
1:3	CH ₃ CN	5.0	88.2	11.8	
	DMF-H ₂ O ^b	1.0	0	100	

^aEstimated by ¹⁹F NMR spectroscopy.

The results of the syntheses of per(poly)fluoroalkyl aldehydes from the corresponding halides with PbBr₂(catalyst)/Al are listed in Table 1.

With α,ω -dihaloper(poly)fluoroalkanes, the corresponding α,ω -per(poly)fluorodialdehydes are formed. The reactivity of per(poly)fluoroalkyl halides decreases in the order: $R_r I > R_r E R_r C I$ [9]. Thus for α,ω -dihaloper(poly)fluoroalkanes with two different halogen atoms, C-formylation takes place preferentially at the more reactive site. ω -Haloper(poly)fluoroalkyl aldehydes can thus be synthesized.

DMF acts both as a reactant and a solvent in such reactions. Other aprotic solvents such as DMSO, THF, etc. can also be used. However, in protic solvents like alcohols, R_tH becomes the main product. If the reaction system contains 1 equiv. of water, then R_tH becomes the sole product (as shown in Table 2).

Experimental

All reactions were carried out in DMF under nitrogen. ¹H NMR data (with chemical shifts in ppm from external TMS) and ¹⁹F NMR data (with chemical shifts in ppm from external TFA and positive for upfield shifts) were recorded on a Varian EM-360 spectrometer (60 Mz for ¹H and 56.4 Mz for ¹⁹F) neat or in (CD₃)₂CO for solid products. Infrared spectra were recorded on a Shimadzu IR-400 spectrometer and mass spectra on a Finnigan GC–MS 4021 mass spectrometer. All temperatures were uncorrected and the yields of products are reported as those isolated.

A typical procedure was as follows: R_rX (X = I, Br) was added to a stirred suspension of aluminum powder (1.0–1.2 equiv.) and PbBr₂ (0.01–0.05 equiv.) in dry DMF (c. 2 ml solvent/mmol R_rX). The mixture was stirred under nitrogen for 1–4 h. Dilute aqueous HCl was then added and the mixture

b10:1 by volume.

TABLE 3 Boiling points, melting points, IR spectra, $^1\mathrm{H}$ and $^{19}\mathrm{F}$ NMR spectra of per(poly)fluoroalkyl aldehydes

Compounds	Boiling points (°C)	¹⁹ F (ppm)	¹ H (ppm)	IR (cm ⁻¹)	Ref.
F(CF ₂) ₂ CHO	6.0	6.1 (3F); 56.0 (2F)	9.32	1775	1a
F(CF ₂) ₄ CHO	47.0–49.0	6.7 (3F); 49.7 (2F); 51.3 (4F)	9.31	1772	10
F(CF ₂) ₆ CHO	90.092.0	6.5 (3F); 46.7 (2F); 48.0 (4F); 48.5 (2F); 51.3 (2F)	9.40	1775	11
F(CF ₂) ₈ CHO	125.0–126.5	6.4 (3F); 46.4 (8F); 48.3 (2F); 51.2 (4F)	9.44	1770	11,12
F(CF ₂) ₁₀ CHO	70.0–72.0 ^a	5.7 (3F); 46.2 (16F); 51.0 (2F)	9.85 ^b	1770	11
Cl(CF ₂) ₄ CHO ^c	84.0-85.5	-7.1 (2F); 44.6 (2F); 47.7 (2F); 50.8 (2F)	9.42	1775	
Cl(CF ₂) ₆ CHO ^d	131.0–132.0	-7.3 (2F); 45.0 (2F); 45.9 (4F); 48.2 (2F); 50.8 (2F)	9.45	1778	
Cl(CF ₂) ₈ CHO ^e	36.0–38.0ª	-7.3 (2F); 44.9 (2F); 45.8 (8F); 48.0 (2F); 50.7 (2F)	9.45	1773	
$OHC(CF_2)_4CHO$	121.5–123.5	48.0 (4F); 50.7 (4F)	9.48	1768	2
OHC(CF ₂) ₆ CHO ^f	144.0–146.0	46.1 (4F); 48.3 (4F); 50.7 (4F)	9.50	1768	
$\mathrm{OHC}(\mathrm{CF}_2)_8\mathrm{CHO}^g$	68.0–70.5°	46.3 (12F); 50.0 (4F)	9.85 ^b	1769	
$\mathrm{OHC}(\mathrm{CF}_2)_4\mathrm{O}(\mathrm{CF}_2)_2\mathrm{SO}_2\mathrm{F}^\mathrm{h}$	156.0–159.0	6.2 (2F); 6.7 (2F); 36.7 (2F);	9.47	1770	utinued)

TABLE 3 (continued)

Compounds	Boiling points (°C)	¹⁹ F (ppm)	¹ H (ppm)	IR (cm ⁻¹)	Ref.
		46.2 (2F);			
		49.3 (2F);			
		50.2 (2F);			
		-121.2 (1F)			
$F_2C = OCF_2CF(CF_3)O(CF_2)_2CHO^i$	130.0–132.0	5.5 (3F);	9.34	1772	
		7.4 (2F);			
		9.4 (2F);			
		40.8 (1F);			
		48.5 (1F);			
		54.0 (2F);			
		62.2 (1F);			
		70.0 (1F)			

^aMelting points.

Products c-i are new compounds and other data are given below:

°MS: 265 (M⁺+1); 267; 245; 247; 235; 237; 229; 216; 131 (100); 100; 85; 87.

Elemental analysis: for its monohydrate $C_5H_3ClF_8O_2$: Calculated: C, 21.26; H, 1.07; F, 53.80%. Found: C, 21.34; H, 1.18; F, 53.61%.

^dMS: 365 (M⁺+1); 367; 345; 347; 325; 327; 131 (100); 100; 85; 87.

Elemental analysis: for its monohydrate $C_7H_3ClF_{12}O_2$: Calculated: C, 21.98; H, 0.79; F, 59.60%. Found: C, 21.81; H, 0.92; F, 59.49%.

^eMS: 465 (M⁺+1); 467; 445; 447; 429; 416; 131 (100); 100; 85; 87.

Elemental analysis: for its monohydrate $C_9H_3ClF_{16}O_2$: Calculated: C, 22.40; H, 0.63; F, 62.99%. Found: C, 22.27; H, 0.82; F, 62.86%.

^fMS: 359 (M⁺ + 1); 360; 339; 331; 319; 311; 309; 291; 132 (100); 131; 100.

Elemental analysis: for its hydrates $C_8H_6F_{12}O_4$: Calculated: C, 24.38; H, 1.53; F, 57.85%. Found: C, 24.52; H, 1.62; F, 57.61%.

⁸MS: 459 (M⁺ +1); 460; 439; 431; 411; 391; 369; 362; 341; 131 (100); 100.

Elemental analysis: for its hydrates $C_{10}H_6F_{16}O_4$: Calculated: C, 24.31; H, 1.22; F, 61.52%. Found: C, 24.12; H, 1.35; F, 61.70%.

^hMS: 429 (M⁺ + 1); 409; 380; 229; 183; 131; 119 (100); 100; 51.

Elemental analysis: for its monohydrate $C_7H_3F_{13}O_5S$: Calculated: C, 18.85; H, 0.68; F, 55.36%. Found: C, 18.78; H, 0.72; F, 55.38%.

¹MS: 393 (M⁺+1); 373; 364; 345; 325; 295; 247; 131; 97; 59 (100).

Elemental analysis: for its monohydrate $C_7H_3F_{12}O_4$: Calculated: C, 23.43; H, 0.74; F, 60.23%. Found: C, 23.34; H, 0.82; F, 60.14%.

was extracted four times diethyl ether. The organic layer was combined and dried over MgSO₄ overnight. A crude pale yellow product was obtained after the removal of solvent, which was then dehydrated with P_2O_5 to give the corresponding per(poly)fluoroalkyl aldehydes R_fCHO .

All boiling points, melting points, IR spectra, ¹H and ¹⁹F NMR spectra of the per(poly)fluoroalkyl aldehydes synthesized in this way are described in Table 3.

^bFrom internal TMS.

References

- (a) D. R. Husted and A. H. Ahlbrecht, J. Am. Chem. Soc., 74 (1952) 5422; (b) M. Braid,
 H. Iserson and F. E. Lawlor, ibid., 76 (1954) 4027; (c) A. L. Henne, R. L. Pelley and R.
 M. Alm, ibid., 72 (1950) 3370, (d) F. Brown and W. K. R. Musgrave, J. Chem. Soc.,
 (1952) 5049.
- 2 R. B. Greenwald and D. H. Evans, J. Org. Chem., 41 (1976) 1470.
- 3 N. O. Brace, J. Org. Chem., 26 (1961) 4005.
- 4 R. W. Lang, Helv. Chim. Acta, 71 (1988) 369.
- 5 S. Benefice-Malouet, H. Blancou and A. Commeyras, J. Fluorine Chem., 45 (1989) 87.
- 6 H. Tanaka, S. Yamashita, T. Hamatani and S. Torii, Synth. Commun., 17 (1987) 789.
- 7 C. Y. Guo, Y. F. Zhang and Q. Y. Chen, Acta Chim. Sinica, 40 (1982) 828.
- 8 J. J. Ma, J. L. Chen and X. Y. Dai, Acta Chim. Sinica, 47 (1989) 720.
- 9 C. M. Hu and X. Q. Tang, to be published.
- 10 D. R. Husted and A. II. Ahlbrecht (to Minnesota Mining & Manufg. Co.), US Pat. 2 568 500 (1951) [Chem. Abs., 46 (1952) 4561h].
- (a) U. Hiroshi, H. Takao and T. Yukio (to Asahi Glass Co., Ltd.), Br. Pat. 1473807 (1977)
 [Chem. Abs., 87 (1977) 133 898s];
 (b) U. Hiroshi, H. Takao and T. Yukio (to Asahi Glass Co., Ltd.), Ger. Offen. 2 556 844 (1977) [Chem. Abs., 87 (1977) 101953q].
- 12 S. Kawakami and T. Hayashi, Asahi Garasu Kenkyu Hokoku, 27 (1977) 99.